Step of Proof: l_before_antisymmetry
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
l
before
antisymmetry
:
T
:Type,
l
:(
T
List),
x
,
y
:
T
. no_repeats(
T
;
l
)
x
before
y
l
(
y
before
x
l
)
latex
by ((((((Unfolds ``l_before`` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
)
CollapseTHEN (D 0))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
l
:
T
List
C1:
3.
x
:
T
C1:
4.
y
:
T
C1:
5. no_repeats(
T
;
l
)
C1:
6. [
x
;
y
]
l
C1:
7. [
y
;
x
]
l
C1:
False
C
.
Definitions
t
T
,
A
,
x
before
y
l
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
no
repeats
wf
,
sublist
wf
origin